智能投顾≠赚取高回报的神秘机器人
马天平
CEO
贝塔智投
创始人兼CEO,在创业之前,曾任工行总行量化精选基金负责人,管理证券类投资基金200多亿元,此后去了蚂蚁金服集团任智慧配置板块负责人。
问:领导者网络:AI时代的财富管理,如何衡量和评价智能投顾的投资端?
答
马天平:主要看收益性、安全性和分散性。投资本身属于结果导向,而且很难比较。因为投资者是需要靠时间来证明自己的业绩能力,所以结果都是事后才能去验证。
要说智能投顾的投和传统量化交易本质上有什么异同,我认为"投"本质上就是量化交易。量化交易就是量化发出一个信号,然后根据这个信号去进行买卖。信号来源可以有很多种,肉眼看或者列个Excel表或者编程都可以。除了投,更重要是顾,这是传统量化交易没有的。
问
领导者网络:不少中国智能投顾创业团队强调高收益率,您怎么看?
答
马天平:要理性看待智能投顾的投资收益率,智能投顾的投资收益率不高因为智能投顾不可能是赚取高回报的神秘机器人。如果存在,拥有者肯定直接将此机器人用于自有资金的市场交易并通过资产管理获取回报,而不会选择出售投资建议获取回报的方式。
根据这一逻辑悖论的推断,智能投顾提供的收益率大约是市场Smart平均收益。但仍有可以体现专业度的地方,就是收益回报的分散性或者波动性。贝塔智投的策略波动性一般是市场的五分之一到三分之一,也就是说智能投顾收益率不一定超级高,但安全更多。
问
领导者网络:但是投资者核心关注的还是收益率?
答
马天平:是的,人性很难改变。很多人为什么到30岁投资才开始逐渐成熟,刚毕业的人都想暴富,但结果没暴富反而亏了,最后慢慢左一耳光,右一耳光被市场教育成熟,越来越关心安全度。
投资者的风险偏好核心看资金量和不同人对于不同资金的安排。传统的问卷调查不是有效的方式。从问卷设计的角度出发,客户可能填写的信息不准确,或者刻意隐瞒等。现实中人做决策是很复杂的,并不像教科书上简单地按照不同风险等级设计投资组合,然后给客户测风险偏好,最后按照风险等级推组合。比如很小的资金量根本与风险偏好没有关系,又比如同一个人在不同的阶段风险偏好也会发生变化,例如成立家庭前后、子女降生前后等。
问
领导者网络:贝塔智投如何获取投资者真实的风险偏好?
答
马天平:基本都是一点一滴地沉淀,研究如何去陪伴客户、如何从金融模型去刻画客户的零碎信息。现实中并不存在一个很直接、很干净的数据能真实反映投资者的风险偏好。传统的数据,比如银行提供给我们的账户信息、转账流水和申购记录等,在此处的价值不大。
能真实反映客户的数据往往来自非结构化数据,比如专不专业、有没有钱、性格急躁还是冷静等,这些数据需要和客户反复的交互获取。这个过程就类似人见面交流一样,在沟通的过程中,我们的大脑会收集一点一滴的信息,包括一句话一个眼神等,然后通过这些信息集合得出一个综合的判断。
The Leader Networks 独家采访
来源:慢钱头条