股票财经直播行情分析网-阿牛直播

股票直播视频行情分析

学习炒股票、牛股预测、短线炒股技巧、股票学习视频教程、最新股市消息、股票行情分析

构建数字经济时代新金融信用评分模型

阿牛智投 来源:阿牛智投 21-06-16 17:03

       权威征信机构的信用评分是国内信贷市场量化风控的基础设施,建议央行征信系统进一步开放个人信用评分。国外发达的征信机构开发的信用评分往往有上百种之多,我国可借鉴相关经验开发更多的基础性信用评分,助力新金融健康和快速发展。

构建数字经济时代新金融信用评分模型

       信用评分是利用数学模型将相关数据转化成某个数值指导信贷决策,是统计学和机器学习在金融和银行业中最成功的应用之一。在西方发达国家,信用评分技术是信用风险管理的有效工具,已逐渐成为消费者征信机构的重要增值产品,广泛应用于中小企业贷款、个人贷款、信用卡和保险业务等方面,是个人经济、金融生活不可分割的一部分。在我国,随着个人信贷和信用卡业务的发展,信用评分也开始用于商业银行的贷款决策、贷款定价和贷后管理等方面。信用评分模型研发在我国起步较晚,近年来在数字经济场景下,新金融飞速发展,需求较为迫切,需要进一步创新和监管政策开放来促进信用评分在新金融中的深入应用。

我国信用评分起步晚,有较大提升空间

       20世纪末,我国信用卡、房贷、车贷等信贷业务发展快速,若仅靠人工审贷,主观经验决策效率低下且风险隐患大,不能完全满足实际需要,在此背景下信用评分引入到了信贷机构。随着个人征信系统的建立,央行征信中心也开发了信用评分,在部分信贷机构测试应用。

       经过多年发展,国内信贷机构利用信用评分模型风险管理的水平持续提升但却参差不齐。具体来说,大型银行信用评分研发较早,自主研发构建了信用评分模型,应用效果较好;股份制银行在引入先进个人信用评分模型和技术基础上,建立了自己的信用评分团队;城市商业银行则多模仿行业成熟的个人信用评分模型,并依据自身客户特点进行改善。部分农商行和村镇银行因个人信贷业务起步较晚,信用评分业务往往采取外包方式。

       小贷公司和网贷机构信用评分水平因平台规模和运营能力不同而存在较大差异,多数情况下由于无法获得央行征信系统数据支持,只能与金融科技公司和大数据公司合作开发基于替代数据的信用评分。总体而言,信贷机构由于业务的迫切性,对于信用评分应用投入较大,但信用评分存在诸多问题:

       国内传统信贷领域应用深度不够。目前,国内信用评分模型的研发,仍处于起步阶段,评分类型单一、缺乏深入应用。例如,国内信用评分主要应用于信贷审批阶段,对于贷中行为、贷后催收评分应用不足,对国外最新信用评分热点——偿债能力评分(Affordability Score)还未涉及。

       信用评分五花八门概念不清。在西方,信用评分是一个较为明确的技术名词,但在国内目前由于央行征信系统的信用评分尚未完全开放,信用评分五花八门,概念上也较为混乱,缺少规范分类,用途也不够清晰。政府机构推出了社会信用评分,互联网公司推出了芝麻信用评分。信用评分研发和应用需要监管,保护消费者隐私,维护公平和正义。

信用评分市场供需不平衡,“有市无价”。尽管信用评分对于信贷机构风控至关重要,但国内信用评分研发还处于“有市无价”阶段,即信贷市场上存在需求,由于国内对分析模型的价值判断以及知识产权保护等问题,仍缺乏合理定价。

数字经济时代信用评分模型面临新挑战

       互联网规模化和虚拟化效应。目前,我国消费金融呈现互联化特点,互联网消费金融占比超过了1/4,一方面带来了消费金融扩张的规模效应,另一方面扩大了信用风险的范围。特别是由于技术复杂化、模式多元化、主体分散化使得风险更为复杂,风险管理难度加大。同时,互联网平台也促使欺诈风险上升,诸多互联网金融平台防范欺诈风险的成本占收入的10%以上。因此,针对互联网信贷平台的信用评分应将此种欺诈风险和信用风险考虑在内。

       消费信贷呈现新特点,需要新风控模型。随着消费信贷的发展,越来越呈现额度小、周期短、频率高等特点。互联网金融监管趋严之前,部分小额信贷利率风控薄弱,利用高收益覆盖高风险,甚至不在少数的现金贷平台不做信用风险评估,业界称之为“裸奔”。随着消费信贷监管政策的陆续出台,风控“裸奔”模式难以继续,需要开发适应小额、短期、循环贷的信用评分模型。

       近七成人群传统征信缺失。当前,我国央行征信系统主要服务于传统信贷机构,覆盖人群为持牌信贷机构消费者。截至2019年4月底,征信系统收录自然人为9.93亿、5.4亿人拥有信用报告,其中能够进行个人信用评分的约有4亿人(有两年信贷记录积累的人群)。按全国人口13.90亿计算,近9亿消费者没有传统信贷信用记录,也没有信用评分。

       金融科技信贷和大科技信贷出现。金融科技信贷(Fintech Credit)即利用电子平台发放的贷款,如P2P网贷近年来应起。大科技(Big Tech)公司金融开始陆续提供面向C端的支付、信贷、保险和资管等金融服务,形成了金融生态环境,还能对信贷消费者形成金融闭环约束。比如,蚂蚁花呗是阿里巴巴集团旗下的重要金融产品,背靠阿里电商平台开展消费金融业务。这两类信贷的信用评分模型有别于传统信用评分模型,面临着监管和网络信息安全的挑战。

建立新金融信用评分模型

构建数字经济时代新金融信用评分模型

       综合考虑多因素,系统理解信用评分。通常信用评分流程包括多个模块,目前业界关注的数据采集和预测建模部分仅是信用评分的一部分。所以,从观念上应从系统角度理解信用评分。同时,也不能简单用部分技术指标对信用评分性能衡量,例如,很多信贷机构迷信KS值衡量信用评分的性能,但并非KS值越大信用评分性能就越好,这需视具体情况而定。

       另外,近年来人工智能和机器学习在金融领域得到越来越多的应用,但与信用评分的融合还在进行中,部分互联网公司直接利用深度神经网络取代传统逻辑回归,虽然某些指标表现不错,但却最终由于无法在实际中应用而放弃。因为信用评分应用不仅要看预测效果,还要综合考虑,特别是信用评分模型的稳定性和可解释性。

       充分利用央行征信数据,开发多种基础性信用评分。目前,国内较大的新金融平台(除了蚂蚁金服、腾讯和京东的金融生态体系形成闭环),其信贷客户消费者90%都在央行征信系统中有个人信用报告,即消费金融所说的“白户”。所以,应充分利用央行征信数据开发信用评分模型,或直接利用央行征信系统信用评分是新金融机构开展风控的首选。

       权威征信机构开发的信用评分是国内信贷市场量化风控的基础设施,建议央行征信系统进一步开放个人信用评分。另外,国外发达的征信机构开发的信用评分往往有上百种之多,我国央行可借鉴相关经验开发更多的基础性信用评分,助力新金融健康和快速发展。例如,可以开发更多针对不同信贷产品的行业评分,并给出不同区域的风控特征。此外,这些信用评分还可以帮助央行进行宏观经济分析和金融市场监管。

       建立符合新金融发展的信用指标体系,提高信用评分准确性。信用评分模型的依据是消费者信用模型,消费者信用模型有不同层级的指标体系,比如,消费者信用模型可通过第一层信用指标体系还款意愿和还款能力来体现,由此向下类推最终形成数千个消费者信用指标,即信贷特征变量,国外三大征信机构的核心专业资源就包含了通过风控经验和统计分析得来的数千项信用指标体系。

       在多层次信用指标体系基础上,授信机构就可以利用信贷特征变量开发出不同预测目标的模型,这些模型针对授信机构内部特定的信贷组合、特定的信贷产品、客户类型开发,同时具有个人征信数据的广度和在特定信贷产品客户行为刻画的深度。在信用评分过程中,信用指标体系可灵活配置确定风险目标,利用机器学习或统计学方法,选择合适的模型变量缩短开发流程。所以,一个完善的信用指标体系对于开展信用评分工作至关重要,可以提高信用评分的准确性、稳定性和开发效率。

       虽然国内征信机构和信用评分公司对消费者构建了相对完善的信用指标体系,但需要指出的是,本土化的指标体系构建,需要符合国内消费者行为模式和信贷特点,以及符合互联网金融场景需要。目前,国内的新金融信贷业务大量尝试部分替代数据进行信用评分,例如,电信数据、租房数据、公共事业数据等,基于这些替代数据信用指标体系的构建不仅是开发信用评分的必要条件,也是一个全新的充满挑战的工作,需要大量的研发和技术人员的投入。

       探索创新的信用评分模式,弥补传统信用评分模式不足。已有60余年历史的信用评分模式主要基于消费者过去的信贷历史来判断未来的信贷还款状况,其缺陷非常明显,如果消费者没有信用历史和银行信贷记录,就很难进行信用风险评估。因此,需要探索创新的信用评分模式,笔者认为可以从两方面入手:

       从信用信息角度,替代数据是目前信用评分研究的热点,作为传统信贷数据的有力补充,可以分为三类:信贷类信用信息;非信贷类信用信息和非信贷类非信用信息。传统信用评分模型主要利用的是与信贷违约直接相关的信贷类信用信息。目前,全球约有30亿消费者没有传统的信贷数据,国内外征信机构和金融科技公司为了解决这一问题,开始大量利用部分非信贷类信用信息和非信贷类非信用信息开发信用评分,例如,美国FICO公司就与两家征信机构合作,利用电信数据和公共事业缴费数据开发了一种新的信用评分成为FICO XD,可以帮助没有信贷记录的消费者享受金融服务。目前国内大约9亿消费者虽然没有传统信贷数据,但却有着丰富的互联网经济数据,包含了丰富的非信贷信用信息,能够体现经济的活力。

构建数字经济时代新金融信用评分模型

       从信用风险评估方法角度出发,部分金融科技公司进行了诸多尝试,颇有借鉴意义。例如,一家名为企业金融实验室(EFL)的公司采用了心理测量学方法对消费者进行信用风险评估,通过与银行以及征信机构合作取得了不错的效果,目前业务已开展十年,范围拓展至亚洲和非洲等新兴市场,截至2017年末,已经服务了90万消费者和小微企业主,放款达15亿美元。需要指出的是,上述创新信用评分模式的性能尚未超越传统信用评分模型,只能作为传统信用评分模式的有效补充。

       应在评估有效性和个人信息保护之间寻求平衡。2018年5月25日,欧盟《通用数据保护条例》(General Data Protection Regulation,GDPR)正式生效。中国也不例外,陆续出台了《网络安全法》,《最高人民法院、最高人民检察院关于办理侵犯公民个人信息刑事案件适用法律若干问题的解释》和《信息安全技术个人信息安全规范》等一系列法规,全球个人信息保护持续加强。在此背景下,个人信用评分的研发和应用面临个人信息保护的挑战,从2017年至今,多个个人数据公司以及开展信用评分业务的公司陆续受到了国内执法部门的调查。目前,国内个人信息保护法尚未出台,《征信业管理条例》中也未对个人信用评分有所规定,但基于个人信息保护持续加强的趋势,国内开展个人信用评分的研发和应用,需要充分考虑个人信息保护并保证评分结果的公平,满足合规性在评估有效性和个人信息保护之间寻求平衡。

来源:亿欧

内容如涉及个股仅供参考,不构成任何投资建议!投资风险自负。投资有风险,入市须谨慎。

推荐

    点击输入您的评论(文明发言、理性评论,勿发恶意评论,禁止人身攻击)   请勿发任何形式的广告、勿私自建群、发布群号、QQ号或其他联系方式! 请勿向他人索要联系方式。请所有用户小心非官方QQ号,谨防上当受骗!
    

    精品说说更多

      推荐课程

        风险提示:观点仅供参考学习,不构成投资建议,操作风险自担。

        友情链接: 股市大盘 股票投资
        版权所有: 上海点掌文化科技股份有限公司 (2012-2022)
        互联网ICP备案 沪ICP备13044908号-1 广播电视节目制作经营许可证(沪)字第0428号 沪ICP证:沪B2-20150089 互联网直播服务企业备案号:201708210015
        沪公网安备 31010702001519号 违法和不良信息举报热线:021-31268888 网站安全值班QQ:800800981 举报邮箱:

        您还未绑定手机号

        请绑定手机号码,进行实名认证。

        立即绑定

        X

        您修改的价格将提交至后台审核审核时间为1个工作日,请耐心等待

        确定 取消
        X

        互联网跟帖评论服务管理规定

        第一条 为规范互联网跟帖评论服务,维护国家安全和公共利益,保护公民、法人和其他组织的合法权益,根据《中华人民共和国网络安全法》《国务院关于授权国家互联网信息办公室负责互联网信息内容管理工作的通知》,制定本规定。

        第二条 在中华人民共和国境内提供跟帖评论服务,应当遵守本规定。

        本规定所称跟帖评论服务,是指互联网站、应用程序、互动传播平台以及其他具有新闻舆论属性和社会动员功能的传播平台,以发帖、回复、留言、“弹幕”等方式,为用户提供发表文字、符号、表情、图片、音视频等信息的服务。

        第三条 国家互联网信息办公室负责全国跟帖评论服务的监督管理执法工作。地方互联网信息办公室依据职责负责本行政区域的跟帖评论服务的监督管理执法工作。

        各级互联网信息办公室应当建立健全日常检查和定期检查相结合的监督管理制度,依法规范各类传播平台的跟帖评论服务行为。

        第四条 跟帖评论服务提供者提供互联网新闻信息服务相关的跟帖评论新产品、新应用、新功能的,应当报国家或者省、自治区、直辖市互联网信息办公室进行安全评估。

        第五条 跟帖评论服务提供者应当严格落实主体责任,依法履行以下义务:

        (一)按照“后台实名、前台自愿”原则,对注册用户进行真实身份信息认证,不得向未认证真实身份信息的用户提供跟帖评论服务。

        (二)建立健全用户信息保护制度,收集、使用用户个人信息应当遵循合法、正当、必要的原则,公开收集、使用规则,明示收集、使用信息的目的、方式和范围,并经被收集者同意。

        (三)对新闻信息提供跟帖评论服务的,应当建立先审后发制度。

        (四)提供“弹幕”方式跟帖评论服务的,应当在同一平台和页面同时提供与之对应的静态版信息内容。

        (五)建立健全跟帖评论审核管理、实时巡查、应急处置等信息安全管理制度,及时发现和处置违法信息,并向有关主管部门报告。

        (六)开发跟帖评论信息安全保护和管理技术,创新跟帖评论管理方式,研发使用反垃圾信息管理系统,提升垃圾信息处置能力;及时发现跟帖评论服务存在的安全缺陷、漏洞等风险,采取补救措施,并向有关主管部门报告。

        (七)配备与服务规模相适应的审核编辑队伍,提高审核编辑人员专业素养。

        (八)配合有关主管部门依法开展监督检查工作,提供必要的技术、资料和数据支持。

        第六条 跟帖评论服务提供者应当与注册用户签订服务协议,明确跟帖评论的服务与管理细则,履行互联网相关法律法规告知义务,有针对性地开展文明上网教育。跟帖评论服务使用者应当严格自律,承诺遵守法律法规、尊重公序良俗,不得发布法律法规和国家有关规定禁止的信息内容。

        第七条 跟帖评论服务提供者及其从业人员不得为谋取不正当利益或基于错误价值取向,采取有选择地删除、推荐跟帖评论等方式干预舆论。跟帖评论服务提供者和用户不得利用软件、雇佣商业机构及人员等方式散布信息,干扰跟帖评论正常秩序,误导公众舆论

        第八条 跟帖评论服务提供者对发布违反法律法规和国家有关规定的信息内容的,应当及时采取警示、拒绝发布、删除信息、限制功能、暂停更新直至关闭账号等措施,并保存相关记录。

        第九条 跟帖评论服务提供者应当建立用户分级管理制度,对用户的跟帖评论行为开展信用评估,根据信用等级确定服务范围及功能,对严重失信的用户应列入黑名单,停止对列入黑名单的用户提供服务,并禁止其通过重新注册等方式使用跟帖评论服务。国家和省、自治区、直辖市互联网信息办公室应当建立跟帖评论服务提供者的信用档案和失信黑名单管理制度,并定期对跟帖评论服务提供者进行信用评估。

        第十条 跟帖评论服务提供者应当建立健全违法信息公众投诉举报制度,设置便捷投诉举报入口,及时受理和处置公众投诉举报。国家和地方互联网信息办公室依据职责,对举报受理落实情况进行监督检查。

        第十一条 跟帖评论服务提供者信息安全管理责任落实不到位,存在较大安全风险或者发生安全事件的,国家和省、自治区、直辖市互联网信息办公室应当及时约谈;跟帖管理服务提供者应当按照要求采取措施,进行整改,消除隐患。

        第十二条 互联网跟帖评论服务提供者违反本规定的,由有关部门依照相关法律法规处理。

        第十三条 本规定自2017年10月1日起施行。

        请前往个人中心进行实名认证

        立即前往
        请选择打赏数
        • 10牛
        • 30牛
        • 50牛
        • 其它
        砖家也不容易,有你打赏更精彩

        该文章您还未购买,确定要打赏吗?

        付100牛即可查看有谁在踩

        您还未绑定手机号

        请输入手机号码,获取验证码进行手机绑定。

        获取验证码

        您的个人信息将严格保密,请放心填写

        赠人玫瑰 手有余香
        感谢您的鼓励,点赞之余再留个言吧!
        换一组 换一组